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ABSTRACT: ~ Blood samples collected from Ameri-  Beaufort, Hyde, Tyrrell, and Washington
can black bears (Ursus americanus) in eastern and . unties during the November 2015 regulated

western North Carolina, US, were analy‘zed for hunting season, and from 64 bears (29 males
piroplasms. Piroplasmids were detected in 17% K

(23/132) of the animals surveyed. We detected a and 35 females) from western North Carolina
Babesia spp. previously identified in North that were live-trapped, sampled, and released
American raccoons (Procyon lotor) and a maned  between April 2014 and September 2015 in

wolf (Chrysocyon brachyurus); prevalence was  Agheville, Buncombe County, North Carolina
22% (14/64) and 13% (9/68) in the mountain and (Fig. 1). Live bear studies were approved by

coastal black bear populations, respectively. The o ;
presence of the same Babesia species in black the Institutional Animal Care and Use Com-
bears, raccoons, and a maned wolf suggests mittee at North Carolina State University and

piroplasms may not be host specific. followed American Society of Mammalogists
Key words: American black bear, Babesia, Guidelines (Gannon et al. 2007).
North Carolina, PCR, piroplasms, Theileria,

) All bears were in good body condition with
Ursus americanus.

no abnormalities on physical exam. Ages were
determined by tooth annuli. The median body
Piroplasmid transmission occurs mostly weight of eastern North Carolina bears was
through competent vectors or direct contact 134 kg (interquartile range: 90-210 kg), and
(i.e., animal fights; Tkawa et al. 2011). Specif- ages ranged between 1.75 and 15.75 yr old.
ically, Babesia transmission is commonly asso-  Blood samples from eastern North Carolina
ciated with ticks of the order Irodida, and the  bears were collected from major vessels from
most commonly recognized vectors are Der- 30 min up to 8 hr after death during carcass
macentor spp., Rhipicephalus spp., Amblyom-  processing. Ticks (attached and unattached)
ma spp., and Irodes spp. (Hodzi¢ et al. 2017).  were collected from carcasses. Blood (4 mL)
American black bears (Ursus americanus) from western North Carolina bears was
provide blood meals for ticks throughout the collected from the femoral artery into tubes
majority of their range (Yabsley et al. 2009; treated with ethylenediaminetetraacetic acid.
Chern et al. 2016; Skinner et al. 2017). Black Ectoparasites, including unattached and at-
bear populations and human-bear interactions  tached ticks, were collected from multiple
in North Carolina, US, have increased over the anatomical locations (axillae, pinnae, and
past 35 yr for many reasons. Therefore, the inguinal areas). Blood and ticks in alcohol
objective of our study was to determine the from all bears were stored at —20 C until
molecular prevalence of piroplasms in two processed.
populations of free-ranging black bears in Our PCR targeted a 600-base-pair region of
eastern and western North Carolina. the 18S rRNA gene used to detect piroplasms
A total of 132 blood samples from black (Babesia spp. and Theileria spp.) in DNA
bears were analyzed. Postmortem blood was extracted from blood samples as previously
collected from 68 bears (47 males and 21 reported (Varanat et al. 2011). The concen-
females) in eastern North Carolina from tration of DNA was measured using the
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Ficure 1.

Hunting areas (wide black lines) in Asheville, Buncombe County (western North Carolina, USA)

and Beaufort, Hyde, Tyrell, and Washington counties (eastern North Carolina) where black bears (Ursus

americanus) were sampled in 2014-15.

absorbance ratio between 260 and 280 nm
(NanoDrop, ThermoFisher Scientific, Wal-
tham, Massachusetts, USA) after DNA extrac-
tion from 200 pL of blood from each bear with
a QIAmp DNA Mini Kit (Qiagen Inc.,
Valencia, California, USA).

Piroplasmid DNA was amplified using a
piroplasma 18S-144s: 5 ACCGTGCTAATTG
TAGGGCTAATACA 3’ (forward primer) and a
piroplasma 18S-722as: 5 GAATGCCCC
CAACCGTTCCTATTAAC 3’ (reverse primer).
The DNA was amplified in 25 pL final volume
containing 12.5 pL Tak-Ex® Premix (Thermo-
Fisher Scientific), 7.3 pL molecular grade water,
0.2 pL of each primer (100 pmol/uL; IDT DNA
Technology, Coralville, Iowa, USA), and 5 uL of
DNA extracted from bear blood. Molecular-
grade water (5 pL) was used for negative
controls. Positive controls were prepared with
5 uL of DNA from blood of a dog infected with
Babesia canis. An Eppendorf Mastercycler
EPgradient® (Eppendorf, Hauppauge, New
York, USA) was used to complete conventional
PCR using a single hot-start cycle at 95 C for 3
min followed by 55 cycles of denaturing at 94 C
for 15 s, annealing at 68° C for 15 s, extension at
72 C for 18 s, and amplification at 72 C for 2
min. A 2% agarose gel electrophoresis and
visualization using ethidium bromide under
ultraviolet light was used to analyze all PCR
products. DNA sequences were aligned and
edited with AlignX (Vector NTI suite 11.5.1,

Invitrogen, Carlsbad, California, USA). Samples
were sequenced by Eton Bio, Inc. (Research
Triangle Park, North Carolina, USA). Evolu-
tionary analyses were constructed in MEGAT7
(Kumar et al. 2016). The Maximum Likelihood
method, based on the Tamura-Nei model (1,000
bootstrap replications), was used for molecular
phylogenetic analysis.

No DNA amplification was detected in any
negative extraction control or PCR negative
control sample. Overall, 17% (23/132) of blood
samples were positive for piroplasm DNA
ampliﬁcation: 22% (14/64) and 13% (9/68)
from western and eastern North Carolina
bears, respectively. Four groups of piroplasms
were identified by DNA sequence analysis
comparing the 18SrRNA amplified region:
Group A, from a single bear from western
North Carolina showing a homology of 100%
(588 base pairs) with a Babesia sp. (GenBank
accession no. DQ028958) detected in a rac-
coon from Illinois (Birkenheuer et al. 2006);
Group B, detected in 11 bears (four from
western North Carolina and seven from
eastern North Carolina), showing 99.8% (587/
588 base pairs) homology with a Babesia sp.
from a raccoon (GenBank no. DQ028958) and
99.7% (586/588 base pairs) with a Babesia sp.
(GenBank no. KR017880) from a maned wolf
(Chrysocyon brachyurus); Group C, identified
in 10 bears (nine from western North Carolina
and one from eastern North Carolina), showing
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FIGURE 2.
detected in black bears (Ursus americanus).

a 99.8% (587/588 base pair) homology with
GenBank DQ028958 and GenBank KR017880
sequences; and Group D, detected in a single
bear from eastern North Carolina, showing
100% (588 base pairs) homology with Theileria
cervi isolated from elk (Cervus elaphus) in
Wisconsin and Indiana (no. AY735134) and
from a white-tailed deer (Odocoileus virgin-
ianus) from Oklahoma (no. AY735122).

We used real-time PCR amplification of a
150 bp region of mitochondrial genome
(partial ¢ oxidase subunit cox gene region)
from Babesia (Qurollo et al. 2017), to assess if
sequence differences in 18SrRNA detected in
groups A, B, and C (Fig. 2) could have been
due to different Babesia species. We detected
no sequence differences between groups,
which suggests that all three belonged to the
same species (AJB-2006) detected in a North
American raccoon (no. DQ028958).

Piroplasm infection was identified at an
overall molecular prevalence of 17% (23/132)
in 132 black bears from North Carolina. Black
bears from eastern (13%, 9/68) and western
(22%, 14/64) North Carolina had similar
prevalence, and each was greater than those
reported in Oklahoma (Skinner et al. 2017),
and New Jersey (Shaw et al. 2015; Chern et al.
2016), previously.

Using 16SrRNA  mitochondrial DNA  se-
quencing techniques (Maggi et al. 2010), we
identified ticks collected from black bears from

Differences in a 588-base-pair region of the piroplasma 18S rRNA region among Babesia species

western North Carolina as Ixodes scapularis and
Ixodes cookie. Ticks from eastern North Caro-
lina bears were identified using a tick identifi-
cation key and included Amblyomma
americanum, Ixodes, and Dermacentor spp.
Most Babesia spp. detected in black bears
from eastern and western North Carolina were
>99% homologous with a Babesia spp. previ-
ously identified in a raccoon (Birkenheuer et al.
2006) and in a captive maned wolf (Phair et al.
2012). These organisms appear to be the same
species based on DNA analysis (Fig. 3).
However, it is unclear if the small base-pair
differences in the 18SrRNA region (described
as groups A, B, and C) reflect mutations
occurring because of geographic differences
(separated loci) in either competent vector, host
populations, or host dynamics, or if they
represent different strains of the same species.
The black bears we studied showed no
clinical signs of disease. Babesia infection is
often asymptomatic until an animal is immu-
nosuppressed or coinfected with other vector-
borne pathogens (Alvarado-Rybak et al. 2016).
Further studies are needed to assess the
clinical impact of piroplasms on wildlife. Our
results support other studies (Ikawa et al.
2011; Shaw et al. 2015; Skinner et al. 2017)
suggesting black bears can be a reservoir for
these and other vector-borne pathogens. The
increased bear population in North Carolina
and the associated increase in contact be-
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Ficure 3. Molecular phylogenetic analysis with the
Maximum Likelihood method of Babesia 18S rRNA
sequences detected in black bears (Ursus americanus)
from mountain and coastal North Carolina, USA in
2014-15. The evolutionary history was inferred by using
the maximum likelihood method based on the Tamura-
Nei model (1,000 bootstrap replications). The tree with
the highest log likelihood is shown. The percentage of
trees in which the associated taxa clustered together is
shown next to the branches. The tree is drawn to scale,
with branch lengths measured in the number of
substitutions per site (next to the branches). The analysis
involved 28 nucleotide sequences. There was a total of
621 positions in the final dataset.

tween bears, humans, vectors, and domestic
animals suggest a potential for babesiosis and
other vector-borne zoonosis exposure.
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