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EVALUATING ALLOSTATIC LOAD: A NEW APPROACH TO

MEASURING LONG-TERM STRESS IN WILDLIFE

Ashley N. Edes, Ph.D., Barbara A. Wolfe, D.V.M., Dipl. A.C.Z.M., Ph.D., and Douglas E. Crews,

Ph.D.

Abstract: Animal welfare, conservation, and stress assessment are all critical components of species survival.

As organisms experience stressors, they accumulate physiologic dysregulation, leading to multiple negative health

outcomes. This brief review suggests measuring the degree of stress-induced damage, known as allostatic load,

and then using allostatic load to evaluate changes implemented to improve animal welfare and conservation

efforts. Over the past two decades, human clinical research has developed multiple allostatic load indices

constructed from composites of neuroendocrine, cardiovascular, metabolic, and immune biomarkers. These

indices are designed to estimate allostatic load in hopes of ameliorating or even negating damaging effects of

stress. Among humans, allostatic load is associated with a variety of factors such as age, sex, stressful experiences,

personality, social position, and early life history. Despite conservation of stress responses throughout

mammalian species, reported allostatic load indices for animals are rare. Because many zoo researchers and

field scientists already collect data on multiple biomarkers, constructing allostatic load indices may be a relatively

affordable, easily implemented, and powerful tool for assessing relative risks of morbidity and mortality within

wildlife. As an example, in a study among zoo-housed gorillas, an allostatic load index constructed using seven

biomarkers was associated significantly with age, sex, stressful experiences, rearing history, markers of poor

health, and mortality risk. Such results evidence that allostatic load is as applicable to animal populations as it is

to humans. By using allostatic load as a predictive tool, human caretakers will be better informed of individuals at

greatest risk for health declines. Most importantly, allostatic load may provide earlier opportunity for preemptive

care while contributing a transformational tool to animal welfare research. Additionally, allostatic load may be

compared between individuals and groups within the same population and allow comparisons of health between

and across populations, consequently informing habitat and population protection efforts.
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INTRODUCTION

Vertebrate stress responses are promoted by

neuroendocrine and metabolic mechanisms by

which the body adapts behaviorally and physio-

logically to temporary stressors for improved

survival. This adaptation is referred to as allo-

stasis.84,85 Repeated or chronic allostatic activity

can cause physiologic dysregulation, leading to

poor health outcomes.57 In humans, chronic stress

response activation is associated with asthma,57

diabetes,57,58 hypertension,58,79 hypercholesterol-

emia,58 gastrointestinal disorders,57 cardiovascular

disease (CVD),57,79 viral infections,57 cognitive

decline,54 neoplasia,57,79 frailty,35 psychological dis-

orders,36,79 immunosuppression,51,58 and autoim-

mune dysfunction.51,57

Even allostatic responses after minor physical,

biological, behavioral, or social stimuli may

damage cells, tissues, and organs,55,57 resulting in

measurable physiologic change. Although stress

responses and stress-induced pathology are mul-

tisystemic, most vertebrate stress research has

been limited to reporting responses of a few

physiologic biomarkers, such as adrenal glucocor-

ticoids.58,70,82,86,87 In humans, an expanding area of

research is applying integrated composites of

biomarkers from multiple somatic systems to

measure stress-induced physiologic dysregula-

tion, or allostatic load.57 When compared between

individuals, higher allostatic load reflects greater

subclinical risk for future development of chronic

degenerative conditions and shortened lifespan.

Applications of allostatic load to nonhuman

species are rare. However, a comprehensive

measure of allostatic load in wild species may

allow us to better care for wild animals in

captivity and inform conservation measures by

facilitating identification and mitigation of stress-

ors that may be associated with poor health

outcomes. In this paper, literature on allostatic

load in humans is briefly reviewed, how allostatic
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load is determined is explained, methodologic

variability is addressed, and results of the first

application of an allostatic load index to a

nonhuman species are reviewed.

THE ALLOSTATIC LOAD MODEL

Allostatic load accumulates as the soma per-

ceives and deals with stressors across the lifespan

(Fig. 1). Multiple predisposing factors, such as

developmental, social, and environmental condi-

tions, influence how organisms perceive events.

Once stressors are perceived, allostatic responses

occur via fluctuations in primary mediators (e.g.,

stress hormones and inflammatory markers),

which promote additional change throughout the

soma in response to current stressors. This

allostatic activity normally ceases once the per-

ceived stressor is eliminated.57 However, when

allostatic stress responses occur repeatedly over

the lifespan, dysregulation in primary mediators

and secondary outcomes (e.g., metabolic and

cardiovascular markers) can occur,57 reflecting

long-term exposure to stressors. Systemic dysreg-

ulation may then lead to tertiary outcomes

associated with morbidity and mortality, such as

development of chronic degenerative diseases

(Fig. 1).57 The purpose of constructing allostatic

load indices is to estimate the extent of physio-

logic dysregulation (ie, allostatic load) in mem-

bers of a sample, which serves as an early,

subclinical warning sign of future poor health

outcomes.

The first human allostatic load index included

10 biomarkers representing the neuroendocrine,

cardiovascular, and metabolic systems, including

systolic blood pressure, diastolic blood pressure,

waist–hip ratio, total cholesterol : high-density

lipoprotein (HDL) ratio, glycosylated hemoglobin

(HbA1c), urinary cortisol, urinary epinephrine,

urinary norepinephrine, HDL cholesterol, and

dehydroepiandrosterone sulfate (DHEA-S).77 To

estimate allostatic load, each biomarker was

divided into quartiles of risk (high risk being the

highest quartile for all but DHEA-S and HDL,

which are considered high risk in the lowest

quartile). These biomarkers were then incorpo-

rated into a single, comprehensive value by

summing the number of biomarkers in the high-

risk quartile for each individual.

Because allostatic load accumulates through

dysregulation of the entire soma, measuring its

effects is not limited to specific biomarkers. As

applications of allostatic load to assessing human

stress increase, so does the number of biomarkers

potentially useful in its estimation,6,14,35 with a

2010 review counting 51 different biomarkers in

58 studies.35 While allostatic load incorporates

traditional stress-activated hormones, such as

Figure 1. Contributors, components, and outcomes of allostatic load. This figure includes a nonexhaustive list

of variables associated with allostatic load. ACE indicates angiotensin-converting enzyme; BMI, body mass index;

CRP, C-reactive protein; IL-6, interleukin 6; SES, socioeconomic status; TNF-a, tumor necrosis factor alpha.

Reproduced with permission from Edes and Crews.14
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glucocorticoids and catecholamines, additional

biomarkers of physiologic dysregulation include

inflammatory markers (interleukin 6 [IL-6], fibrin-

ogen), neurotransmitters (serotonin, dopamine),

physioactive proteins (creatinine, albumin, C-

reactive protein), and triglycerides.6,18,35,45 Because

the stress response is highly conserved across

vertebrates,63 dozens of biomarkers validated for

assessing allostatic load in humans likely will be

similarly useful in many other species, although

some will not. For example, glucocorticoids,

catecholamines, inflammatory markers, and phys-

ioactive proteins are used throughout research on

humans6,14,35 and are likely to be useful in animal

allostatic load indices. Because allostatic load

indices typically are constructed by combining

biomarkers reflecting acute stress responses (e.g.,

glucocorticoids) and those reflecting long-term

physiologic dysregulation (e.g., albumin), allo-

static load estimates both current physiologic

stress and long-term stress-induced somatic dam-

age.

Estimating allostatic load

Allostatic load is a soma-wide process affecting

multiple integrated systems, so providing a com-

prehensive measure requires an allostatic load

index composed of a variety of neuroendocrine,

cardiovascular, metabolic, and immune biomark-

ers. Most allostatic load indices include between

eight and 14 biomarkers.6,14,35 Importantly, allo-

static load may be estimated using previously

obtained data, thereby limiting invasiveness

among animals living in frequently studied

groups. All biomarkers incorporated into an

allostatic load index should be assessed at the

same time, although multiple tissue types can be

used (e.g., saliva, urine, feces, hair, serum).

Allostatic load is estimated most frequently

using the original quartile methodology.6,14,35 Dis-

tributions of each biomarker are determined from

observed data and divided into quartiles. Obser-

vations in the high-risk quartile are scored as 1,

and observations in all other quartiles are scored

as 0 (Fig. 2). Because allostatic load indices were

designed to reflect subclinical risk, quartiles

traditionally are determined using sample distri-

butions rather than standard or clinical values,

which makes allostatic load indices sensitive to

risk even within samples containing primarily

healthy subjects. For patients with poorer health,

use of clinical or standard physiologic values to

determine cut-points remains difficult because

standard reference values are not available for

many biomarkers of allostasis. Additionally, be-

cause of differences in environment and life

history, standard reference values may not be

applicable across all populations. For example, in

humans, clinically defined cut-points do not

always apply to non-Western cultures. Body mass

index (BMI) in Samoan compared with Yanoma-

mi women is one such example. If Western

Figure 2. How to calculate allostatic load using quartile cut-points. Q1 indicates first quartile (lowest values);

Q2, second quartile; Q3, third quartile; Q4, fourth quartile (highest values).
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clinical standards are used to determine cut-

points for BMI,88 most Samoan women will

receive a 1 toward their allostatic load, and most

Yanomami women will not. This artificially

inflates risk in each population, both of which

have faced different environments and conditions

across the lifespan.14 Clinically based constructs

directly counteract the usefulness of allostatic

load indices in determining those individuals in a

group who are at greatest underlying and sub-

clinical risk for future health issues and shortened

lifespan.

Depending on the biomarker, either hypo- or

hypersecretion (hormones) or low or high levels

(physiologic measures) may indicate greater risk

of early morbidity and mortality (Fig. 2). For

example, elevated IL-6 is maladaptive, so the top

25% of the distribution would be considered high

risk and individuals with values in that quartile

would receive a 1 toward their allostatic load

score, whereas those with values outside the

highest quartile would receive a 0. Albumin, on

the other hand, is considered dysregulated when it

is low, so the bottom 25% of the distribution

would be considered high risk and those with

values in that quartile would receive a 1 toward

their allostatic load score, whereas individuals

with values outside the lowest quartile would

receive a 0. Allostatic load is then determined by

summing the number of biomarkers within the

high-risk quartile for each individual (Fig. 2).

Each animal’s allostatic load will lie between 0 (no

biomarkers in the high-risk quartile) and the

number of biomarkers included (all biomarkers

in the high-risk quartile).

Since its initial implementation, other methods

of calculating allostatic load have been developed

in human research, such as using clinical cut-

points when available, calculating scores for

individual systems (e.g., cardiovascular, metabol-

ic), demarcating allostatic load into ‘‘high’’ versus

‘‘low’’ categories, using two-tailed cut-points for

biomarkers considered dysregulated at both ex-

tremes, using sex-specific cut-points, weighting

different biomarkers, and adjusting for medica-

tions affecting biomarkers of interest.14 Some of

these modifications may improve allostatic load

estimation. Using sex-specific cut-points is bene-

ficial when titers of biomarkers are significantly

different between males and females, because that

biomarker may differentially associate with age or

other predisposing factors based on sex. Differ-

entially weighting biomarkers also may improve

predictive value,37 although equally weighted

constructs adequately reflect allostatic load and

predict future outcomes just as accurately.39

Other modifications may be less beneficial,

such as adjusting allostatic load to account for

medication use. The original allostatic load index

and many subsequent reports consider medicinal

interventions that control some biomarkers (e.g.,

blood pressure, cholesterol) to beneficially reduce

known risk factors, subsequent wear-and-tear,

and physiologic dysregulation, thus lowering

allostatic load.47,68,78 Other studies account for

medications by somehow adjusting the allostatic

load index (e.g., adding a point for every bio-

marker directly affected by a medication regard-

less of the biomarker’s current level; specific

adjustments vary by study).1,2,13,19,25,50,67 Following

this logic, appropriate medical intervention leads

to increased allostatic load. However, it does not

follow that when an obese person loses weight by

increasing their activity or a hypertensive individ-

ual reduces their blood pressure using medica-

tion, that their overall allostatic load would be

increased. Thus, penalizing a subject’s allostatic

load because these activities result in reductions

in biomarkers is counterintuitive. Allostatic load

was designed to assess subclinical risks for

current and future health losses and to allow both

increases and decreases in biomarkers to alter its

level. When biomarkers are controlled via phar-

macologic or behavioral interventions and subse-

quently lowered to subclinical values, overall risk

is reduced, and therefore one’s allostatic load also

is reduced. Medication is intended to benefit

health and well-being, thereby reducing allostatic

load. Reduction in risk factors does not contrib-

ute to increased risk of morbidity or mortality, but

rather the opposite. When constructing allostatic

load indices, researchers must decide which, if

any, modifications to the original methodology

are necessary for adequately assessing allostatic

load in their sample.

Within any sample and no matter the method,

higher allostatic load relative to conspecifics

corresponds to reduced health and poorer future

outcomes, and vice versa. Quantitative analyses

allow researchers examining stressors to explore

relationships between allostatic load and multi-

ple independent variables, such as sex, age,

number of known stressors experienced (e.g.,

anesthetic events, wounding), and behavioral

characteristics. Additionally, researchers can

use quantitative analyses to explore relationships

of allostatic load with a variety of dependent

variables, for example morbidity (e.g., incidences
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of illness, biomarkers of health, immune system

activity) and lifespan.

ALLOSTATIC LOAD IN HUMANS

Despite using different biomarkers for con-

struction, studies incorporating allostatic load

indices in humans report similar results.6,14,35 For

example, there are multiple predictors of higher

allostatic load. Corresponding to natural age-

related declines in many biomarkers,10 allostatic

load in humans is positively associated with

age.10,11 Just as early life experiences can affect

stress response activity,51,56 they also can influence

adult allostatic load.4,33,74 For example, low birth

weight4 and childhood abuse or neglect12,33 are

associated with higher allostatic load in adult-

hood. Personality and sociality also affect allo-

static load. Hostility,44,78 poor coping skills,17 and

higher perceived stress21 are associated with

higher allostatic load, whereas strong social

networks are associated with lower allostatic

load.20,33,75,78 Social status also has an inverse

relationship with allostatic load.11,67,72–74 In addi-

tion to environmental factors, genetic factors also

likely influence allostatic load.1,65,74 For example,

higher allostatic load is associated with shorter

telomere length,1 and it has been suggested that

individual allostatic load is 30% genetic and 70%
environmental.65

Higher allostatic load also is associated with

multiple outcomes. Allostatic load is positively

associated with measures of poor health and

morbidity, such as poor physical performance

and risk of physical decline,77 CVD,38,50,78 abdom-

inal obesity, hypertension, diabetes, and arthri-

tis.50 Individuals with higher allostatic load also

have increased mortality risk.34,46,73,76,77 Higher

allostatic load is related to poor mental health

as well, including lower cognitive function-

ing,9,37,76,77 greater cognitive declines over

time,38,76,77 decreased brain volume measure-

ments,9 and psychiatric disorders.8,40,52,53,64

ALLOSTATIC LOAD RESEARCH IN

ANIMALS

Several researchers previously have suggested

the inclusion of an allostatic load framework in

studies of animal populations.27–31,42,43 Subsequent-

ly, various reports have included biomarkers of

allostatic load, the concept of allostatic load, or

both to frame research questions and discuss

results. For example, fluctuations in numerous

biomarkers in rodents (e.g., glucocorticoids, IL-6,

tumor necrosis factor alpha [TNF-a], corticotro-

pin-releasing hormone [CRH]),5,41,82,83,87,89 sheep

(e.g., vasopressin),83 and rhesus macaques (Maca-

ca mulatta; e.g., glucocorticoids, IL-6, epineph-

rine)48 have been explained using allostatic load as

a framework. On the basis of the reproductive

strategies of many species, Goymann and Wing-

field22 hypothesized that allostatic load was inher-

ent to being either socially dominant or

subordinate and measured glucocorticoids to test

their hypothesized allostatic loads. They reported

that in species in which dominant individuals have

higher allostatic load, they also have higher

glucocorticoids and that when subordinates have

higher allostatic load, they have higher glucocor-

ticoids than dominant individuals.22 Since then,

others have used glucocorticoids as a simple

proxy for allostatic load to examine sociality,

testosterone, and ornamentation in male man-

drills (Mandrillus sphinx),81 body condition and

group composition in dominant versus subordi-

nate superb starlings (Lamprotornis superbus),69

sibling competition and hunger stress in spotted

hyena cubs (Crocuta crocuta),7 energy storage in

black-legged kittiwakes (Risa tridactyla),71 and

effects of age and season on grey mouse lemurs

(Microcebus murinus).24

Although these studies provide an important

foundation for familiarizing the veterinary com-

munity with allostatic load, their purpose was

different from that proposed here. Previous

research applied the theoretical framework of

allostatic load but did not estimate allostatic load

using an allostatic load index constructed from

multiple biomarkers. Instead, they hypothesized

that allostatic load moderates a previously ob-

served relationship, such as differences in social

rank, body condition, or group composition, and

then measured glucocorticoids to infer allostatic

load. Rather than constructing an allostatic load

index, which often includes glucocorticoids, these

studies instead reported glucocorticoids alone as

reflecting allostatic load.

Our suggestion is to construct allostatic load

indices that are composed of biomarkers from

multiple somatic systems reflecting both acute

stress responses and effects of chronic stress for

wildlife and zoo-housed animals. Clinical re-

search in humans has firmly established the

importance of allostatic load as both an outcome

of life history (e.g., age, stressful events experi-

enced) and a predictive construct (e.g., disease

development, mortality). Additionally, previous

research indicates single biomarkers do not

adequately predict future health outcomes,23,38,77,80

demonstrating that glucocorticoids alone are
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insufficient for estimating allostatic load. Al-

though some methods and biomarkers used in

humans may not be available to animal research-

ers (e.g., most species lack clinical cut-points for

biomarkers, waist–hip ratio likely is meaningless

for most species), abundant opportunities exist to

apply allostatic load to wildlife populations and

those in human care. As it is typically estimated

using biomarker distributions within a single

sample, allostatic load can be determined even

when researchers only have access to relatively

small sample sizes, when standard physiologic

values are unavailable for the species of interest,

or both. However, because animal samples in

human care tend to be limited, if data are

available for members of the same species from

different locations, then these individuals can be

combined into a larger sample, so long as

variation by sample location is accounted for

statistically. At the time of submission, the

research group for this paper is the only one to

have followed methodology from human clinical

research by constructing an allostatic load index

in an animal species and then using the estimated

allostatic load to examine predictors and out-

comes by statistical analyses.

A case study: allostatic load in zoo-housed gorillas

Using zoo medical records and assays of

banked serum, an allostatic load index was

operationalized for western lowland gorillas (Go-

rilla gorilla gorilla, n¼27) housed at the Columbus

Zoo and Aquarium (Powell, Ohio) between 1956

and 2014.16 This allostatic load index included

seven biomarkers: albumin, cortisol, CRH,

DHEA-S, glucose, IL-6, and TNF-a. Distribu-

tions of each biomarker were divided into quar-

tiles (Table 1), and the number of biomarkers in

the highest risk quartile represented each gorilla’s

individual allostatic load. Because of significant

differences between males and females in albumin

and IL-6, sex-specific quartiles were determined

for these biomarkers (Table 1). Both hypo- and

hypersecretion of cortisol may reflect physiologic

dysregulation,3,32,66 so a two-tailed quartile was

used for this biomarker (bottom and top 12.5% of

the sample distribution; Table 1).

Gorillas in this sample ranged from 6 to 52 yr of

age (Table 2). Mean age for females was 25.2 (SD

¼ 14.2) yr and for males was 20.0 (SD ¼ 11.5) yr.

At the time allostatic load was determined, 10

gorillas had died (Table 2). On average, sampled

gorillas experienced 34.7 (SD ¼ 31.7) stressful

events (e.g., anesthetic events, zoo transfers, and

aggressive encounters with wounding) over their

lifespans (Table 2). Allostatic load ranged from 0

to 4 (Table 2). Allostatic load was significantly

associated with age and number of stressful events

experienced. Additionally, allostatic load differed

significantly between male and female gorillas,

with females having a twofold higher allostatic

load than males. In terms of outcomes, allostatic

load was significantly associated with indicators

of poor health (e.g., triglycerides, creatinine) and

mortality risk.16 Because disrupted early environ-

ments also are substantial stressors for many

species, a follow-up study examined associations

between rearing history and adult allostatic load.15

Males, regardless of rearing history, had low

allostatic load. Females, however, had significant

differences in allostatic load by rearing history.

Wild-caught females had significantly higher

mean allostatic load compared with mother-

reared females, whereas nursery-reared females

were between and not significantly different from

either wild-caught or mother-reared females.

On the basis of higher allostatic load in females,

it is hypothesized female gorillas may face sub-

stantially more stressors than silverbacks when in

human care. Silverbacks are sometimes aggressive

toward females,26 and in the wild, females subse-

quently limit proximity to the silverback to times

of estrus or when they have an infant and require

protection.59–62 The potential inability of females

in human care to limit proximity to the silverback

sufficiently may result in hypervigilance, increas-

Table 1. Mean, standard deviation, and high-risk
quartile boundaries for biomarkers included in an
allostatic load index constructed for 27 western
lowland gorillas housed at the Columbus Zoo and
Aquarium, Powell, Ohio (1956–2014).

Biomarker x̄, SD
High-risk

quartile boundarya

Albumin (g/dl) 3.50, 0.51 M � 3.90, F � 3.70

CRH (pg/ml) 4.14, 0.45 �4.3675
Cortisol (lg/dl) 14.05, 7.00 �8.7, �23.0
DHEA-S (lg/dl) 39.61, 33.91 �15.85
Glucose (mg/dl) 80.36, 28.15 �80.68
IL-6 (pg/ml) 5.66, 5.75 M � 3.48, F � 11.99

TNF-a (pg/ml) 0.77, 0.79 �0.984

a The highest risk quartile for albumin and DHEA-S is the

first quartile; the highest risk quartile for CRH, glucose, IL-6,

and TNF-a is the fourth quartile. The high-risk quartile for

cortisol includes the bottom and top 12.5% of the sample

distribution. Sex-specific cut-points were used for albumin and

IL-6. CRH indicates corticotropin-releasing hormone;

DHEA-S, dehydroepiandrosterone sulfate; IL-6, interleukin

6; TNF-a, tumor necrosis factor alpha; M, male; F, female.

Modified with permission from Edes et al.16
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ing their allostatic load compared with males.15

Together, these results suggest providing females

greater control over their proximity to silverbacks

may help reduce their allostatic load.15,16 This

research provides evidence that allostatic load

indices can be applied to animal populations in

much the same way as human populations and

may be useful for both captive and wild manage-

ment strategies.

CONCLUSIONS

As a theory of stress response and physiologic

dysregulation, allostasis and allostatic load pro-

vide a novel view on how stressors affect somatic

health and function over the lifespan of an animal.

Many animals adaptively hide illness and injury

until their health is dire.49 Allostatic load indices

are tools for identifying apparently healthy indi-

viduals who are at risk and in need of preventative

care, with the goal of improving health and

lengthening lifespan. Because allostatic load indi-

ces are designed to measure subclinical risk, they

have the potential to enable earlier detection of

potential health issues.

Future research on animal health and welfare

may be enhanced by focusing on constructing

allostatic load indices and analyzing health pro-

moters and outcomes in ways similar to those

used in human clinical research. Initially, validat-

ing associations between allostatic load and both

predictive factors and outcomes should be the

goal. Estimating allostatic load in animal species

should be based on a mixture of multisystemic

biomarkers reflecting both physiologic responses

to acute stress (e.g., glucocorticoids, CRH) and

indicators of long-term dysregulation from chron-

ic stress (e.g., albumin, cholesterol). All biomark-

ers should be obtained at the same time, although

they may be collected from different types of

tissues. Research may commence immediately in

many settings with the use of available data. For

example, specific biomarkers typically are assayed

during routine veterinary procedures in zoo

collections, and others may be obtained from

tissue samples banked during the same examina-

tion.

Researchers also will need to determine appro-

priate methods for constructing allostatic load

indices and should be encouraged to explore

different methods of construction, such as quar-

tile versus decile cut-points, grouping males and

females together versus establishing sex-specific

cut-points, or accounting versus not accounting

for medication use. One limitation to constructing

allostatic load indices in animal research may be

the lack of physiologic reference values for

biomarkers of interest, thereby eliminating the

possibility of using average or clinical cut-points.

Fortunately, because allostatic load estimates

subclinical risk among members of a particular

population and traditionally is based on sample-

specific distributions, this limitation should not

hinder research progress. Additionally, such re-

search efforts will be able to contribute biomarker

data for inclusion in databases, such as Species

360 (formerly the International Species Informa-

tion System), thereby helping establish standard

reference values for use in future research efforts.

The predictive power of allostatic load may aid

in informing human caretakers of which individ-

uals are at greatest risk of health declines,

providing greater opportunity for preemptive care

and transforming animal welfare research. Using

Table 2. Sex, age, number of stressful events
experienced, age at death (if applicable), and estimated
allostatic load at time of sampling among 27 western
lowland gorillas previously or currently housed at the
Columbus Zoo and Aquarium (1956–2014).

Age at
sample (yr)

Age at
death (yr)

Stressful
events (N)

Allostatic
load

Females 13 — 25 0

28 — 3 1

41 — 71 1

16 24 23 1

8 — 12 2

20 — 4 2

17 18 32 2

17 — 62 2

19 — 73 2

11 — 61 3

52 — 59 3

34 41 13 3

14 — 35 3

47 47 149 4

49 — 26 4

17 17 4 4

Males 23 24 12 0

6 21 8 0

16 21 20 0

9 — 8 0

27 — 59 1

46 46 39 1

22 49 26 1

7 — 19 1

23 — 18 2

27 — 34 2

14 — 14 3

x̄, SDa 23, 13 30.8, 13.2 34.7, 31.7 1.8, 1.3

a Mean and standard deviation for age at death only

calculated from deceased gorillas. Modified with permission

from Edes et al.16
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allostatic load allows comparisons between indi-

viduals and groups within the same population, as

well as comparisons of overall health between and

across populations, and consequently informs

habitat and population protection measures. Be-

cause many zoos and field researchers already

collect extensive biomarker data, allostatic load

indices likely will be relatively inexpensive and

easily implemented, providing an informative tool

for improving zoo and sanctuary welfare, imple-

menting preventive care, and measuring both

intended and unintended effects of conservation

strategies.
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