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A B S T R A C T

Sex ratio is fundamental to the demography of animal populations. For sea turtles, the operational sex ratio (i.e.,
that of breeding adults) can be inferred from juvenile sex ratio. In this study, we characterize sex ratio of
n=1401 juvenile loggerhead sea turtles (Caretta caretta) sampled from foraging grounds in North Carolina,
USA. For a subset (n=170), sex was confirmed by laparoscopy, and for the remaining individuals, sex was
classified probabilistically using a mixture regression model. The model predicted plasma testosterone con-
centration as a function of sex, which was treated as a latent variable, and of other potential covariates, namely
water temperature and carapace length. Furthermore, it quantified uncertainty in the sex classification of each
individual. For the full data set, the predicted sex ratio was 81% female. Using the subset of turtles with known
sex and a leave-one-out validation approach, we found the model to have classification accuracy of 94%. We
further used that subset to examine how many laparoscopies are sufficient for accurate classification of turtles
with unknown sex, in an attempt to provide guidance for other studies. We found diminishing returns as sample
size increased, and recommend 100–140 turtles as a sufficient range.

1. Introduction

All sea turtle species are categorized on the IUCN Red List of
Threatened species as vulnerable, endangered, critically endangered, or
data deficient if accurate assessment is not possible (www.iucnredlist.
org). Demographic data are essential for developing models to assess
sea turtle population status, as well as to predict the potential con-
servation benefits of management actions (Heppell et al., 2003a,
2003b). While sex ratio is a fundamental component in the demography
of animal populations overall, in the case of sea turtles it is of particular
interest because hatchling sex is influenced by egg incubation tem-
perature, raising the prospect that sex ratio will be – or is – affected by
climatic warming (Davenport, 1997; Hays et al., 2014; Laloë et al.,
2014; Braun McNeill et al., 2016). If so, estimating and monitoring sex
ratios of sea turtle populations will be increasingly important for un-
derstanding their population ecology and, ultimately, for conservation
(Hamann et al., 2010; Rees et al., 2016).

To understand population growth rates, the operational sex ratio
(i.e., the sex ratio of breeding adults) is of primary interest. However,
focusing on the juvenile stage of sea turtle populations has been re-
commended for inferring operational sex ratios (Braun McNeill et al.,
2016; Wibbels, 2003), because 1) doing so avoids potential sex-specific

breeding behaviors that might bias sampling of adults, 2) hatchling sex
ratio might not propagate to adults if male and female hatchlings ex-
perience different mortality rates, and 3) due to a long developmental
period, juvenile populations comprise numerous cohorts of hatchlings
produced at various nesting beaches. As juvenile sea turtles lack ex-
ternal sex-linked characteristics, various methods have been attempted
to determine sex for this life stage, such as genetic and endocrinological
analyses, as well as laparoscopic examination of gonads (henceforth,
laparoscopy) (Wibbels et al., 2000). However, given the suite of
available techniques, the approach considered most effective is to
measure circulatory plasma testosterone concentrations followed by
laparoscopy for a subset of turtles to assign sex-specific ranges of tes-
tosterone (Wibbels et al., 2000; Wibbels, 2003). Once these ranges are
established, they can be used to assign sex to additional individuals
based solely on testosterone concentrations, and ultimately to calculate
an overall population sex ratio (Wibbels et al., 2000; Wibbels, 2003).

While this stepwise methodology has been applied frequently and
has yielded valuable data (Wibbels et al., 2000), some challenges re-
main. First, a number of studies report the inability to fully classify
turtles based on testosterone concentrations either because female and
male ranges overlap, or because there is a substantial gap between the
highest known female and lowest known male values. This proportion
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of “unknown” turtles varies among studies and is often low (0–3%: e.g.,
Braun McNeill et al., 2016; Geis et al., 2005; León and Diez, 1999;
Sanchez, 2013; Wibbels, 1988). However, it can be as high as 5–8%
(e.g., Allen et al., 2015; Arendt et al., 2012; Blanvillain et al., 2008;
Bolten et al., 1992; Wibbels et al., 1987), and in some cases up to
11–13% (e.g., Geis et al., 2003; Witzell et al., 2005), potentially in-
fluencing the ability to calculate population sex ratio accurately. In
addition, ambient water temperature can influence testosterone con-
centrations and, consequently, the ability to assign sex to juvenile sea
turtles using this method (Braun McNeill et al., 2007; Hawkes et al.,
2013). As a result, more information is needed to determine possible
effects of water temperature on testosterone and guide the timing of
sampling periods to ensure accurate results (Braun McNeill et al.,
2007). Finally, the laparoscopic validation necessary to establish sex-
specific testosterone ranges is challenging, as it requires specialized
expertise, equipment to conduct the surgeries, and facilities for post-
operative observations (Wibbels et al., 2000). Thus, there exists a need
for guidelines concerning the number of laparoscopies required to
achieve suitable predictive power.

Incorporation of partially-validated testosterone data into a mixture
model may provide an avenue to address these issues and refine existing
approaches for estimating sea turtle population sex ratios. The theory
and application of mixture models have received much attention in the
fields of statistics (McLachlan and Peel, 2000; Gelman et al., 2013) and
machine learning, where the approach is referred to as supervised or
unsupervised classification (Hastie et al., 2009). In marine systems,
mixture models have proven useful in such applications as analyzing
animal movement (Patterson et al., 2009), pinniped demography
(Sweeney et al., 2015), fishery discard mortality (Benoit et al., 2012),
somatic growth (Shertzer et al., 2017), and stock identification (Millar,
1987; Pella and Masuda, 2001) including stocks of sea turtles (Bolten
et al., 1998; Bolker et al., 2007). In particular, a recent study of sex ratio
in green sea turtles (Chelonia mydas) contained three individuals of
unknown sex, and a mixture model was used to classify them as female
(Allen et al., 2015).

The goals of this paper are threefold. First, we further test the utility
of mixture models for classifying juvenile sea turtle sex using the largest
available published testosterone dataset, which contains ~1500 juve-
nile loggerhead sea turtles (Caretta caretta) from which samples were
collected over a 14-year period (Braun McNeill et al., 2016). The ap-
plication considers model selection criteria to inform the choice of
model structure and then classifies individual observations (turtles) into
their most likely components (male or female). We further quantify
uncertainty in these classifications, allowing for one to judge the
strength of inference and for the propagation of error to any subsequent
analyses. Second, we evaluate the potential influence of covariates such
as water temperature on testosterone levels. Third, we examine model
performance (classification accuracy) for various proportions of turtles
in the data set with known sex, with the intent to provide guidance on
how many turtles to examine laparoscopically for establishing sufficient
testosterone reference data.

2. Materials and methods

2.1. Data collection and sexing technique

During 1997–2010 from May through November, juvenile logger-
head turtles were sampled from foraging grounds after being captured
in pound nets or long-haul seines fished commercially in Core and
Pamlico Sounds, North Carolina, USA (Fig. 1). Pound nets are a sta-
tionary gear that passively capture targeted fish (Higgins and Pearson,
1928); long-haul seines (here, typically 1 km×2m) are pulled between
two boats to actively encircle and concentrate the catch (Guthrie et al.,
1973). When sea turtles are incidentally captured, the open nature of
the nets allows access for sampling. At each encounter, the turtles were
brought on board small fishing or research vessels to tag and collect

morphometric data and blood samples. In addition, surface water
temperature was recorded to the nearest 0.5 °C using thermometers
calibrated to ensure accuracy throughout the study period.

To identify individual turtles, we tagged both rear flippers with
Inconel metal alloy size 681 self-piercing tags (National Brand and Tag
Company, Newport, Kentucky, USA) and injected a Passive Integrated
Transponder (PIT) tag subcutaneously (Destron-Fearing Corp., South St.
Paul, Minnesota, USA, 125 or 134 kHz). PIT tags were injected ap-
proximately 1 cm anterior to the second most proximal scale of the
trailing margin of the left or right front flipper, or into the triceps su-
perficialis muscle of the left front flipper. We measured standard
straight-line carapace length (cm) using large calipers, and to prevent
use of adults in this study (and avoid bias associated with various sex-
specific behaviors of the adult population; Wibbels et al., 1987; Wibbels
et al., 1991), we excluded from the analysis turtles with carapace
length>75 cm, as this is the minimum adult size observed for this
population of loggerheads (Avens et al., 2015).

For endocrine analysis, we collected 5ml of blood within 30min of
capture from the dorsocervical sinus of the turtle using a sterile syringe
with a 3.81 cm, 20 gauge needle, (Owens and Ruiz, 1980), and we
immediately transferred the sample to a sterile lithium heparin or so-
dium heparin tube which was stored on ice for a maximum of 5 h (i.e.,
for the rest of the field day). In the laboratory, we centrifuged blood
samples for 6–10min, pipetted 2ml samples of plasma into cryogenic
vials, and stored the plasma samples at −80 °C until analysis. These
samples were subsequently processed after each field season using a
testosterone radioimmunoassay technique (detailed in Owens et al.,
1978; Wibbels et al., 1987; Owens, 1997) that was consistent
throughout the course of the study and was previously validated for
loggerhead plasma (Owens, 1997). For each assay, multiple aliquots of
a loggerhead serum pool were used as a control. The intra-assay CV was
11.4% ± 0.95 (mean ± standard error), and the inter-assay CV was
17.9% ± 3.6. Seventy-two assays were run to process the samples,
with a mean extraction efficiency of 87.8% ± 0.17, which was ac-
counted for in the reported testosterone concentrations. The resulting
data (after some culling, see Section 2.7), which we refer to as the full
data set, contained information on n=1401 juvenile loggerhead tur-
tles.

A subset of turtles were selected opportunistically for laparoscopy as
previously described (Wood et al., 1983; Wibbels, 1999), and modified
in later years to incorporate short-acting general anesthesia with pro-
pofol (5 mg/kg IV) in addition to a local anesthetic (lidocaine ≤2mg/
kg), short-term postoperative analgesia (ketoprofen 2mg/kg IM), lat-
eral recumbency (vs. head-down) in a custom-made restraint device,
and closure with monofilament nominally absorbable sutures (poligle-
caprone 25) with lower tissue reactivity (Maclean et al., 2008). This
procedure was conducted at the NOAA Beaufort Laboratory in Beaufort,
North Carolina. It verified the sex of n=170 turtles, of which 121 were
female and 49 were male, and we refer to this subset as the training data
set (Supplement A). Thus our data contained 1401 turtles with sex
known for 170 individuals and unknown for 1231, and potential cov-
ariate information on testosterone concentration, carapace length, and
water temperature at the time blood samples were collected.

2.2. Mixture model framework

We fit the natural log of plasma hormone (testosterone) con-
centrations (H) using mixture regression models (Hamel et al., 2017)
implemented in a Bayesian framework (Gelman et al., 2013). Here, the
observed log concentrations (h= h1, …, hn) were considered to be
generated by a mixture of two components, males (s=1) and females
(s=2). We modeled the expected log testosterone concentration (Hs) of
each sex as a function (fs) of carapace length (L) and water temperature
(T),

= θH f L T( , | )s s s (1)
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where θs is the set of estimated parameters for each sex. The approach
can accommodate any suitable functional form of fs. Here, we consider
various polynomials with all or some of the following terms,

= + + + + + +f β β L β T β L β T β L β Ts s s s s s s s0, 1, 2, 3,
2

4,
2

5,
3

6,
3 (2)

where coefficients β={β0,s,β1,s,…} are estimated parameters. We ap-
plied uniform prior distributions on each member of β, such that β0,s~U
(−10,20) and β1…6,s~U(−2,2).

Group membership (i.e., sex) of each turtle i was denoted by zi and
modeled as partially observed. If sex of an individual was known, zi was
assigned the value of 1 for males and 2 for females. If unobserved, zi
was treated as a latent variable, assumed to follow a Bernoulli dis-
tribution,

d p~Bernoulli( )i (3)

where p is the estimated probability of being male, modeled with the
hyperprior p~U(0,1). The parameter di takes a value of 0 (female) or 1
(male), and thus zi=2− di.

We considered two error distributions, normal and gamma, to
model variability of log testosterone concentration. For the normal
distribution,

βh z N H σ, ~ ( , )si i s s
2 (4)

where βs are the model parameters for each sex Eq. (2), and σs is the
corresponding and estimated standard deviation. For the gamma dis-
tribution,

βh z r λ, ~Gamma( , )si i s s (5)

where =r H σ/s s s
2 2 and =λ H σ/s s s

2. For both error distributions, we ap-
plied a uniform prior on the standard deviation, σ~U(0.1,10).

To implement the model (Supplement B), we used JAGS version
4.2.0 (Plummer, 2003), run in R version 3.4 (R Core Team, 2017) with
the R package R2jags (Su and Yajima, 2015). We ran three independent
Markov chains, each for 900,000 iterations. Posterior distributions were
computed after a burn-in period of 100,000 iterations, and we thinned
the resulting chains by keeping every 20th iteration to allow relatively
long chains while minimizing computational storage space (Link and
Eaton, 2012). Convergence was assessed through visual inspection of
trace, density, and autocorrelation plots, and by examining the Brooks-

Gelman-Rubin statistic for values near 1 (Brooks and Gelman, 1998).

2.3. Classification by sex

In each Markov chain Monte Carlo (MCMC) iteration, the model
assigns each turtle to a single sex. For an individual with known sex, the
assignment is fixed a priori. If unknown, however, the assignment is
made probabilistically and may differ across MCMC iterations. We used
the mode of the posterior distribution (i.e., the sex assigned most fre-
quently) to classify each turtle, and we used the frequency of the modal
assignment to quantify confidence in that classification.

2.4. Model selection

We applied model selection criteria to indicate the optimal error
distribution (normal or gamma) and the optimal level of complexity
(structure of fs). Using the training data set, we fit various models de-
fined by Eq. (2), starting from the simplest model (intercept only, β0,s)
and then adding terms while considering whether they improved per-
formance. This procedure was conducted separately for each error
distribution Eqs. (4) or (5).

Although numerous model selection criteria have been proposed,
none is considered best for all Bayesian applications (Kéry and Schaub,
2012; Hooten and Hobbs, 2015). Thus, we computed three criteria and
examined them for consistency: the deviance information criterion
(DIC), leave-one-out cross validation (LOO), and the widely applicable
information criterion (WAIC, also referred to as Watanabe-Akaike in-
formation criterion). DIC (Spiegelhalter et al., 2002) is perhaps the
most common criterion and is standard output of JAGS. It has been
found to work well in many applications, although it lacks strong the-
oretical justification (Plummer, 2008; Hooten and Hobbs, 2015). Both
LOO (Vehtari and Lampinen, 2002) and WAIC (Watanabe, 2010) have
been suggested as reasonable alternatives to DIC (Gelman et al., 2014),
and were calculated with the R package loo (Vehtari et al., 2016a;
Vehtari et al., 2016b).

2.5. Prediction accuracy

After identifying the optimal model structure, we examined

Fig. 1. Study site in waters of North Carolina (NC), USA.
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prediction accuracy for turtles of unknown sex. In this analysis, we used
the training data set with known sex (n=170), but successively treated
each turtle as if its sex were unknown. Thus, we re-fit the model 170
times, where each iteration contained n=169 turtles of known sex and
n=1 turtle of unknown sex. We quantified prediction accuracy by
comparing classification of the unknowns to their actual sex.

2.6. Sample size of training data

The training data set provides supervision of the classification al-
gorithm; however, such data are relatively costly. Conducting laparo-
scopic examination to verify sex requires far more resources (time,
funding, equipment, expertise) than does collecting data on other
measurable traits, such as carapace length or testosterone concentra-
tion. Therefore, we attempted to quantify the improvement in predic-
tion accuracy as a function of sample size in the training data set. The
objective was to provide guidance for other, similar studies when
evaluating the benefit (classification accuracy) of investment in la-
paroscopy.

In this analysis, we again utilized the original training data set with
n=170 individuals of known sex. From these individuals, we chose at
random (without replacement) a subset of sample size nτ={20,40,60,
…,or 140}, and this subset was used as a new training data set. From
the remaining n− nτ individuals, we chose at random (without re-
placement) a second subset of nℓ=30 individuals for which sex was
treated as unknown. The two subsets were combined to create a data set
with sample size nτ+ nℓ. We applied the optimal model structure to the
combined data set, re-estimating parameters and computing classifi-
cation accuracy for the 30 turtles treated as unknown. For each level of
nτ, this procedure was repeated 100 times, and we evaluated perfor-
mance as nτ increased based on the mean and variance of classification
accuracy.

2.7. Application to the full data set

The full data set comprised 1401 turtles, including the 170 in-
dividuals of known sex. This data set contained only those turtles for
which the associated temperature measurement fell inside the range of
the training data set, to avoid potentially erroneous extrapolations. In
the full data set, the range of straight carapace length was
41.7–75.0 cm, the range of water temperature was 14.0–29.0 °C, and
the range of testosterone concentration was 3.4–5560.0 pg/ml (Fig. 2).
Turtles of known sex were treated as such by the model, and turtles
with unknown sex were classified probabilistically, with these classifi-
cations being the primary output of interest. We used a chi-square test
to compare our estimated population sex ratio to that from a previous
approach in which unknowns were excluded if their testosterone con-
centration fell within a range where the two sexes overlapped (Braun
McNeill et al., 2016).

3. Results

3.1. Fits to the training data

Of the various model configurations fit to the training data set, all
three selection criteria indicated that the optimal performance was
obtained from the model with an intercept term, a linear relationship
with temperature, a quadratic relationship with temperature, and
normally distributed error (Table 1). Including carapace length offered
no improvement, and therefore that predictor was subsequently re-
moved from consideration. Similarly, including higher order terms did
not improve the model; adding a cubic term resulted in poor con-
vergence, because the model was over-parameterized. For the optimal
model, posterior median parameter estimates (95% credible intervals)
for the male component were β0,1= − 1.10 (−4.48,2.27), β2,1= 0.64
(0.30,0.97), and β4,1= − 0.013 (−0.021,−0.005), and for the female

component were β0,2= − 4.93 (−7.56,−2.21), β2,2= 0.94
(0.70,1.20), and β4,2= − 0.022 (−0.028,−0.015). The resulting fits
showed considerable curvature in predicted testosterone concentrations
as a function of temperature, particularly for females (Fig. 3).

In the “single unknown” analysis, overall prediction accuracy was
94% (160 out of 170 turtles classified correctly; Supplement A).
Prediction accuracy for females (95%) was slightly higher than for
males (92%). The model predicted with high confidence (> 98% ac-
curacy) that turtles with low testosterone concentrations were female
and turtles with high concentrations were male (Fig. 4). The model had
lower confidence in predictions at mid-levels of testosterone, where the
majority of mis-classifications occurred. Of those turtles classified in-
correctly, four were male predicted to be female, and six were female
predicted to be male.

3.2. Sample size of training data

As the sample size of the training data set increased, mean classi-
fication accuracy of the nℓ=30 turtles increased as well, although with
diminishing returns (Fig. 5A). At a sample size of nτ=20, mean ac-
curacy was near 88%; at nτ=80, near 92%; and at nτ=140, near 93%.
The uncertainty in these values, as indicated by standard errors, was
little affected by sample size of the training data set (Fig. 5A). Similarly,
the predicted probably (p) of being male and its uncertainty varied little
across the range of sample sizes (Fig. 5B).

The primary effect of increased sample size was in the estimated
regression coefficients (Fig. 5C–H). Although the median values
changed little with increased sample size, the variation in estimates was
greatly reduced, indicating greater model stability. However, this effect
of sample size was also due to increases in total sample size (nτ+ nℓ),
not just that of the training data set alone (nτ).

3.3. Fit to the full data set

The optimal model, when fit to the full data set (Fig. 6), showed
similar patterns in the estimated curves as when fit to the training data
set. Any differences are due to the influence of turtles with sex treated
as a latent variable. For example, the fit to the full data set indicated
non-decreasing testosterone concentrations at warmer temperatures,
and generally appeared more linear than the fit to the training data set.
After observing that result, we re-fit the data with a linear version of the
model (i.e., without β4,s terms), but found the optimal model with the
quadratic term was still favored, as indicated by the information cri-
teria (results not shown). The posterior median parameter estimates
(95% credible intervals) for the male component were β0,1= 0.04
(−2.23,2.22), β2,1= 0.51 (0.31,0.73), and β4,1= − 0.009
(−0.014,−0.005), and for the female component were β0,2= 2.27
(0.93,3.62), β2,2= 0.18 (0.05,0.30), and β4,2= − 0.003
(−0.006,0.000). Because β0,1 < β0,2, the male curve would eventually
decrease below the female curve at lower temperatures, underscoring
the caveat not to extrapolate beyond the range of observations. Pos-
terior distributions of estimated parameters are shown in Supplement C.

The posterior median parameter estimate for the probability of
being male was p=0.17 (0.14,0.20). As with the training data set, the
model had high confidence in sex classification at low and high con-
centrations of testosterone (Fig. 7A). Classification confidence ranged
from 0.51 to 1.0, with about 93% of all turtles being classified with
confidence of at least 0.75 (Fig. 7B). Lower confidence occurred for
mid-range concentrations near 400 pg/ml (~6 pg/ml in log space),
where the overlap between male and female testosterone was most
pronounced (Fig. 2C). Of the 1231 turtles with unknown sex, 211 (17%)
were predicted by the model to be male. When considering all 1401
turtles where sex was known (n=170) or predicted (n=1231), the
estimated sex ratio was 4.4:1 female (F):male (M). That proportion is
significantly higher than 3:1 (χ2= 12.99, df= 1, p < .001), the ratio
reported in a previous study where numerous unknowns were excluded
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from the analysis (Braun McNeill et al., 2016).

4. Discussion

In the current study, we sought to improve the ability to char-
acterize the sex ratio of sea turtle populations using mixture models.
Our application utilized the largest published testosterone dataset for
juvenile loggerheads, collected during multiple seasons with variable
environmental conditions over a continuous 14-year period,
1997–2010. One primary goal was to refine and test analytical meth-
odology for classifying sea turtles by sex based on covariate informa-
tion. We found that the mixture modeling approach was generally
successful, with prediction accuracy of 94%. Although our data set
contained information on testosterone concentration, carapace length,
and water temperature measurements, the modeling approach is gen-
eral and could accommodate any observed covariates that might inform
classification.

Fig. 2. Distributions of observed values in the juvenile loggerhead dataset, pooled across sexes: (A) straight carapace length (SCL), (B) water temperature, and (C) log
of testosterone concentration. Vertical line segments indicate the range of observations in the training data set.

Table 1
Deviance information criterion (DIC), leave-one-out cross validation (LOO), and
the widely applicable information criterion (WAIC) for various model config-
urations Eq. (2) and error structures (Normal or Gamma). Lower values of DIC,
LOO, and WAIC indicate better model performance. Bold text denotes best
performance of models that converged; italicized text denotes poor convergence
of posterior distributions.

Model Normal Gamma

DIC LOO WAIC DIC LOO WAIC

β0 408.7 409.1 409.0 424.1 425.8 425.7
β0, β1 408.9 408.9 408.8 424.7 426.9 426.6
β0, β2 383.9 384.5 384.4 399.4 401.9 401.5
β0, β1, β2 387.0 387.2 387.1 402.9 405.7 405.1
β0, β2, β4 335.5 335.9 335.7 347.3 349.4 348.9
β0, β2, β4, β6 335.4 336.2 336.4 347.7 350.6 350.1
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Another main objective of these analyses was to provide general
guidance about sample size for conducting laparoscopy on a subset of
turtles from a study population. We found diminishing returns in the
sense that classification accuracy saturated as the sample size in the
training data set increased (Fig. 5A). Our analysis with this data set
suggests that a sample size in the range of 100–140 should be sufficient,
somewhat fewer than the sample size of our training data set (n=170).
We recommend that similar analyses be conducted on other data sets to
test whether this result is robust. In general, we would expect the suf-
ficient sample size to depend on the amount of overlap between male
and female testosterone concentrations, with greater overlap requiring
more samples to distinguish the sexes, and with greater distinction re-
quiring fewer samples.

We further recommend that efficiency could be gained by targeting
turtles for laparoscopy in two ways. First, classification accuracy would
likely improve by selecting turtles for laparoscopy that have

intermediate testosterone concentrations in the range where males and
females overlap. Recent methods validated for measuring sea turtle
testosterone (Allen et al., 2015) have the potential to allow these data
to be available quickly (within a day), facilitating optimal selection of
individuals for laparoscopy. Second, incorporating data from turtles
sampled over a broad range of temperatures would help inform esti-
mation of the model's regression coefficients. Including temperatures at
the extremes (low and high) would be particularly useful, to avoid the
temptation to extrapolate beyond the range of observations.

The saturation in classification accuracy occurred because the cov-
ariates themselves are informative for separating the components
(sexes) of the mixture model. The primary effect of the training data set
was to order the regression polynomials (f1 and f2) during the MCMC
procedure. This avoided a known ambiguity when fitting mixture
models: parameters are not identifiable if the mixture distribution re-
mains unchanged when the components' labels are permuted

Fig. 3. Fits of the optimal model applied to the
training data set in which sex is known. Solid lines
represent expected curves based on the medians
from the posterior distributions; dashed lines re-
present 95% credible intervals. Colors and shapes
indicate sex, with males (purple, circles) generally
having higher testosterone concentrations than fe-
males (green, triangles). (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Prediction accuracy of the optimal model
applied to each turtle in the training data set. Purple
circles indicate males (M) correctly classified; blue
squares indicate males incorrectly classified as fe-
male (F); green triangles indicate females correctly
classified; and tan diamonds indicate females in-
correctly classified as male. Predicted sex is that
most often selected in the MCMC iterations, and
classification confidence is computed as the propor-
tion of iterations with that prediction. (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)
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(McLachlan and Peel, 2000; Gelman et al., 2013). In our model, males
were labeled as component one (s=1) and females as component two
(s=2), however the MCMC procedure would be blind to this definition
without the training data set, such that two MCMC chains could achieve
identical regression coefficients, but with the labels reversed. In our full

data set of 1401 turtles, those of known sex comprised only about 12%
of the total sample size, but this was sufficient during estimation to
order the components of the mixture distribution.

Previous studies have considered testosterone concentrations when
examining the sex ratio of this loggerhead population (Braun McNeill

Fig. 5. Effects of sample size of the training data set on (A) mean classification accuracy (± two standard errors) of 30 turtles with sex treated as unknown, (B)
median estimated probability (p) of being male with the line representing 2.5th to 97.5th percentiles, and (C–H) median estimated regression coefficients (see text)
with the lines representing 2.5th to 97.5th percentiles. Means, medians, and other percentiles were computed from 100 randomized replicates.

K.W. Shertzer et al. Journal of Experimental Marine Biology and Ecology 504 (2018) 10–19

16



Fig. 6. Fits of the optimal model applied to the full
data set. Solid lines represent expected curves based
on the medians from the posterior distributions; da-
shed lines represent 95% credible intervals. Colors
indicate the gradient of prediction that an individual
is male (Predicted Sex= 1) or female (Predicted
Sex=2), calculated as the posterior mean value of
Bernoulli variable zi.

Fig. 7. Classification confidence of the optimal
model applied to each turtle in the full data set (A).
Violet circles indicate males (M) known to be male
(from the training data set); light blue triangles in-
dicate females (F) known to be female (from the
training data set); purple circles indicate turtles of
unknown sex classified as male; and green triangles
indicate turtles of unknown sex classified as female.
Predicted sex is that most often selected in the
MCMC iterations, and classification confidence is
computed as the proportion of iterations with that
prediction. Panel (B) shows the proportion of sam-
ples (turtles) in the data set meeting or exceeding
various levels of classification confidence. (For in-
terpretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)
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et al., 2007; Braun McNeill et al., 2016). However, those studies did not
explicitly account for effects of covariates, such as temperature, but
rather excluded turtles sampled at< 20 °C, based on indications that
testosterone concentrations were depressed at lower water tempera-
tures. In addition, those studies excluded data where testosterone
concentrations of males and females overlapped. The mixture modeling
approach here improves on those previous studies by including the
effect of temperature and by predicting sex in the region of overlap,
increasing the available sample size for the study population from 901
(Braun McNeill et al., 2016) to 1401. Furthermore, the approach
quantifies the uncertainty of predictions in the form of classification
confidence (Fig. 7).

Previous analyses indicated that the sex ratio for this juvenile log-
gerhead population was 3.0 F:1.0 M, i.e. 75% female (Braun McNeill
et al., 2016). However, applying the approach described herein to the
full data set yielded a sex ratio of 4.4 F:1.0 M, with 81% of turtles es-
timated to be female. These sex ratios calculated using the two methods
are significantly different. This discrepancy highlights the potential
influence of turtles categorized as “unknown” due to intermediate tes-
tosterone concentrations and/or the influence of covariates such as
water temperature on the ability to characterize population sex ratios
accurately.

Given the high conservation concerns for sea turtles worldwide,
understanding their demography is critical. These concerns are ampli-
fied by the potential for climatic warming to increase egg incubation
temperatures and thereby affect sex ratios. Thus, it is vital to apply
research methods that provide the best possible information, while
minimizing negative impacts of sampling. The results of this study
provide a means to refine sampling and improve analytical methods for
estimating sex ratios of sea turtle populations, enhancing our ability to
support management and conservation efforts.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jembe.2018.03.006.
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